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Abstract

The turbulent fluid flow and heat transfer characteristics of heated rectangular plates such as fins mounted over a surface are

investigated by numerical simulation using a finite-volume method. The investigation is performed taking into account effects of

variation of the fin blockage ratio and flow Reynolds number. These parameters were changed to find their effects on reattachment

position, velocity vector field, pressure distribution, friction coefficient and overall Nusselt number along the block surfaces. The

governing equations are the continuity, momentum and energy equations with RNG based k–e turbulence model. The temperature

field in the block’s mantle and on its outer surface was obtained solving the Fourier’s conduction equation. Numerical validation is

made by comparing the results with experimental measurements and good agreement was observed. Variation of average convection

heat transfer coefficient over the block surfaces is identified and a correlation of the form Nu ¼ 0:126Re0:68ð1þ 2:13BrÞ for average
overall heat transfer coefficient from the blocks is presented. Considering these blocks to act as fins, a correlation for overall fin

efficiency as gf ¼ 2:823Re�0:14Br�0:0526 is also developed.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Recirculating flows arising from the separation of a
boundary layer and its subsequent reattachment occur

in many situations of practical interest such as com-

bustion chambers, gas turbine blades, heat exchangers,

large ducts, electronic devices, vehicles motion and wind

flow around parallel buildings. These systems either

resemble parallel blocks or certain elements that are

introduced to enhance heat transfer between incoming

fluid and a corresponding base plate. For example,
blocks or fins over heat generating elements, blocks over

surfaces in heat exchangers, etc. with free stream con-

ditions. The incoming fluid which is mostly air blows

from a near by fan or air blows through a large chamber

with rectangular blocks over its surfaces. For some

applications, the plates are relatively thick and the flow
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is not of a boundary layer type, being accompanied by

fluid separation and reattachment. In these cases, flow

recirculation influences the rate of heat transfer from the
body, and accurate knowledge of fluid flow and heat

transfer between these prisms and ambient air improves

design and construction, increases life-time, optimizes

material consumption, reduces the space required to

install these elements, and eliminates hot spots to facil-

itate better ways of cooling heat generating components.

The nature of flow around two-dimensional finite thick

rectangular plates is sketched in Fig. 1. As the flow
moves from left to right, the decreases in its velocity

cause a positive pressure gradient on the front surface.

The addition of pressure in the stream-wise direction

and adverse pressure on the side surfaces causes the flow

to separate from the leading edge, and after a distance,

to reattach to the plate, forming a recirculation bubble

within which there is a reverse pressure distribution.

Subsequently, boundary layer growth begins and ap-
proaches to the end of the plate surface and leaves the

plate forming a wake behind the block. The mixing re-

gion between the separation point and the reattachment
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Nomenclature

Ac fin cross-section area

Ar aspect ratio ðL=DÞ
Br blockage ratio ðD=W Þ
cl; c1; c2 coefficients in turbulence model, 0.085, 1.42,

1.68

Cf friction factor coefficient

Cp specific heat

D, H , L, W plate thickness, height, length and spac-
ing

G shear generation, ltðui;j þ uj;iÞuij
h convection heat transfer coefficient

Hr height ratio, ðH=DÞ
K thermal conductivity of solid

k turbulent kinetic energy, u0iu
0
i=2

Nu;NuL Nusselt number, ðhDÞ=k; ðhLÞ=k
p pressure
P fin perimeter

Pr Prandtl number

Re;ReL Reynolds number, ðU1DÞ=m; ðU1LÞ=m
Sij mean strain rate tensor, ðli;j þ lj;iÞ=2
S

ffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij

p
¼

ffiffiffiffiffiffiffiffiffi
G=u

p
,

T temperature

Ts fin surface temperature

ui index notation of velocity components
u0iu

0
j; u

0
iT 0 turbulent Reynolds stress tensor and heat

flux

x; y; z directions of rectangular coordinate

Xr; Yr length and altitude of center of the reattach-

ment region

Greeks

a fluid thermal diffusivity, angle of attack

b parameter in RNG k–e mode, 0.012

dij Kronecker delta function

e turbulent dissipation rate, lðu0i;ju0i;jÞ=q
g; g0 parameters in RNG k–e mode, Sk=e, 4.38
k; kt total and turbulent thermal conductivity of

fluid, ðk0 þ ktÞ; ðCplt=rtÞ
k0 laminar thermal conductivity of fluid

l; lt total and eddy viscosity, ðl0 þ ltÞ; ðclqk2=eÞ
l0 laminar viscosity

m fluid kinematic viscosity

q fluid density

rt turbulent Prandtl number

rk; re turbulent Prandtl numbers for diffusion of k
and e

sw wall shear stress

Subscripts

1 uniform free-stream condition

i i ¼ 1; 2; 3 Cartesian coordinate

i; j; k tensor notation

ðÞ;j derivative respect to j direction

Superscripts

ð�Þ time average component of turbulent para-

meter

ðÞ0 fluctuating component of turbulent para-

meter

Fig. 1. Fluid flow around an array of 2D bluff plates, Ar¼ 5.
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point plays an important role in heat and mass transfer

processes.

Theoretical and experimental analyses of fluid flow

and heat transfer from horizontal parallel plates and in

rectangular thin ducts have been reported in detail.

These studies are either for two-dimensional semi-infi-

nite plates or from two-dimensional thick finite plates.

Experimental studies of McCormick et al. (1984) re-
vealed that, in general, details of heat transfer and

pressure variations in separated flows depend upon the

prior history of the upstream flow. For two-dimensional

cases, potential flow influences are much more impor-

tant and boundary layer effects are typically negligible.

That is, separation occurs at a corner (because of lead-

ing-edge bluntness) rather than because a boundary

layer lacking in momentum encounters a sufficiently
large adverse pressure gradient. The pressure field inside

the separated flow region is then determined largely by

the outer stream flow passing around the body.

For a single thick plate with semi-infinite length,

analysis is also extensive. Experimental studies of Ota



Fig. 2. Parallel 3D finite bluff plates.
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and Kato (1991) and the measurements of Ota and Ohi

(1995) of turbulent heat transfer over a two-dimensional

blunt plate for Re ¼ 5800 show that the Nusselt number

reaches a maximum at about 4.3 plate thickness while
the attachment point was located at 4.1 plate thickness.

Djilali and his co-workers performed a series of both

numerical and experimental studies of turbulent flow

over a bluff rectangular plate. In the experimental part,

Djilali and Gartshore (1991a) showed that the reat-

tachment length and pressure distribution remained

unchanged over the Reynolds number range 2.5 · 104 to
9 · 104. In the numerical computations, Djilali et al.
(1991b) used a modified standard k–e turbulence model

and a variant that incorporates the curvature correction.

Their results show that the prediction of reattachment is

very sensitive to the numerical scheme and to turbulence

modeling. They used two different discretization meth-

ods: hybrid differencing (HD) and bounded skew hybrid

differencing (BSHD) schemes. It was found that BSHD,

which has a higher differencing order, had better
agreement for a reattachment length of 4.3 plate thick-

ness with an experimental measurement of 4:7D.
Recent experimental studies for two-dimensional flow

have been presented by Igarashi and Mayumi (2001) and

Hwang et al. (2001). Experimental studies of Igarashi

and Mayumi (2001) on fluid flow and heat transfer

phenomena around a rectangular block with an aspect

ratio of 5 were carried out for Reynolds numbers in the
range of 2:6� 103 < Re < 1:28� 104. The angle of at-

tack a was varied from 0� to 20�. They proposed an

empirical formula for the Nusselt number as

Nu ¼ 0:085Re2=3 (for a ¼ 0–10� and Re > 4� 103).

For blocks attached onto a base surface, such as a

ribbed surface, finite fins mounted over an engine, pa-

rallel boards attached to a plate, etc., the flow over each

block is no longer two-dimensional, and reattachment
strongly depends on the geometry and flow condition.

For such geometries, for a row-dependent case, Sparrow

et al. (1982) reported experimental results for turbulent

flow for arrays of heat generating rectangular modules

deployed along one wall of a flat rectangular duct.

Experiments were performed with fully populated ar-

rays, arrays in which there were missing modules, arrays

where barriers were implanted to obtain heat transfer
enhancement, and arrays in which there was both a

missing module and a barrier. Row independent results

were obtained for the 5th and all subsequent rows.

Missing modules result in enhancement of heat transfer.

For fully populated array without barriers, a row-inde-

pendent (fully developed) heat transfer coefficient was

obtained. The fully developed Nusselt number for heat

transfer (to air) was correlated as Nu ¼ 0:0935Re0:72H ,
where the Reynolds number is based on the vertical

space above the blocks. Meinders and Hanjalic (1999)

reported the local heat transfer for a matrix of equidis-

tant cubes mounted on the floor of a parallel plate
channel. In this study, the surface temperature of an
internally heated cubical element was measured with

infrared thermography. Most of the previous studies

belong to ribs in pipes or ducts, which have been re-

viewed by Kim and Kim (2002).

Understanding the details of flow and heat transfer

over blunt flat plates is very important. Furthermore,

three-dimensional measurements of such a complicated

flow are not easy to conduct, but numerical analysis may
be appropriate for understanding details of heat transfer

mechanisms when the fins are parallel to the free-stream

flow. For such cases, upstream flow, geometric details

and conduction within the fins will have a strong effect on

the rate of heat transfer and pressure drop through the

blocks. For a single array of blocks the flow boundary

conditions are no longer periodic with developed con-

ditions as described by Sparrow et al. (1982). Turbulent
flow with combined conduction in parallel blocks and

convection heat transfer within the fluid such as shown in

Fig. 2 has not yet been reported. In this geometry, the

parameters which play important roles are known to be

block or fin thickness ðDÞ, fin length ðLÞ, fin spacing ðW Þ,
fin height ðHÞ. For such geometries the flow structure is

complex due to the interaction of viscous layers over the

base with the recirculation bubble over the leading edge
as well as the effects of the flow over the top surface and

free-stream interaction with flow between the plates. The

part of the flow attached to the fin base damps the cir-

culation and produces swirl flow through the duct. In this

study, air with constant temperature and uniform

velocity approaches the blocks and flow will be assumed

turbulent with constant physical properties.
2. Governing equations

The governing equations for the three-dimensional

steady state incompressible fluid flow are as follows:

2.1. Time-averaged equations

By applying time-averaging procedures to conserva-

tion equations, the equations that govern the mean-flow

quantities, ui, p and T , for turbulent flow are:
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ui;j ¼ 0 ð1aÞ

qðujui;jÞ ¼ �p;i þ jlðui;j þ uj;iÞ � qu0iu
0
jjj ð1bÞ

qCpðujT;jÞ ¼ ðkT;j � qCpu0jT 0Þ;j ð1cÞ

Applying the Boussinesq approximation, the Rey-

nolds stress tensor and turbulent heat fluxes are:

�qu0iu
0
j ¼ 2liSij �

2

3
qkdij ð2aÞ

�qCpu0iT 0 ¼ kiT;j ð2bÞ
Fig. 3. Computational domain.
2.2. RNG based k–e turbulent model

In k–e models, the turbulence field is characterized in

terms of turbulent kinetic energy ðkÞ and viscous dissi-

pation rate of turbulent kinetic energy ðeÞ. Yakhot and

Orszag (1986) proposed a variant of the k–e model such

that its performance characteristics were improved rel-

ative to the standard model. The RNG turbulence

model is more responsive to the effects of rapid strain

and streamline curvature, flow separation, reattachment
and recirculation than the standard k–e model. The

forms of the k and e equations of the RNG model

without buoyancy effects are as follows:

qujk;j ¼ l

��
þ lt

rk

�
k;j

�
;j

þ G� qe ð3aÞ

quje;j ¼ l

��
þ lt

re

�
e;j

�
;j

þ c1
e
k
G

� clg3ð1� g=g0Þ
1þ bg3

e2

k
� c2q

e2

k
ð3bÞ

The primary coefficients of the RNG model are

provided by Yakhot et al. (1992). The terms c1Gðe=kÞ
and c2qðe2=kÞ in (3b) represent, respectively, the shear

generation and viscous dissipation of e. The extra term
in (3b) employs the parameter g, which represents the

ratio of characteristic time scales of turbulence and the

mean flow fields, defined by g ¼ Sk=e. It can be shown

that g is a function of the ratio of generation to dissi-

pation of k and can be written as:

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�1

l ðG=qeÞ
q

ð3cÞ

The temperature field in the block’s mantle and on its

outer surface (providing the boundary condition for the

convection) was obtained by solving the Fourier’s heat

conduction equation simultaneously with heat convec-

tion in the fluid. This coupling of the temperature field

and computation of the instantaneous block surface
temperature is assumed by including conduction heat

flux from the solid to the interface of the nearby control
volume of the fluid cell. For heat conduction in the

blocks, Fourier’s equation was employed as:

T;jj ¼ 0 ð4Þ
3. Boundary conditions

To carry out numerical computations, several at-

tempts were made to identify the appropriate domain

around the blocks. First, a complete block was consid-

ered and computations performed for the full domain

grids. For the considered conditions (Reynolds numbers

and blockage ratios) completely symmetric results were

obtained that shows a steady state regime. For low

blockage ratios there was possibility of flow transition to
unsteady conditions. In order to find any differences in

the flow regime, the flow between two half section of

blocks was simulated again. It was found that even for

such condition, the flow is symmetric and any possibility

to unsteadiness was not considerable. Based on this re-

sult, for the rest of computations, only a half section of a

block was selected as illustrated in Fig. 3. For plane

ABba, at the inlet boundary, uniform flow conditions are
imposed for all variables using uin ¼ U1, vin ¼ 0 and

win ¼ 0, Tin ¼ T1 and kin ¼ 1:5� 10�6U 2
1. The inlet

dissipation rate is estimated as ein ¼ k1:5in =ð4:46� 10�1DÞ.
Across the outlet, plane CDdc far from the plate, zero

gradients of variables in the stream-wise direction,

oðÞ=ox ¼ 0, are imposed.

Although this boundary condition is valid for fully

developed flow, its use in other flow conditions is also
permissible for computational convenient provided the

outlet boundary is located in a region where the flow is

in the downstream direction and sufficiently far from the



Fig. 4. Typical grid distribution.

Table 1

Grid independency of the results

Grids Cf Nu Xr=D

105· 60 · 20 0.00824 79.40 4.83
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region of interest. For plane BCcb, a free-stream con-

dition is assumed. The free-stream temperature is as-

sumed to be 25 �C, the base surface of the blocks, plane
HheE, is assumed to be at 75 �C and the base plate
surface is assumed insulated.

For planes AEFGHDCB, FGHE and abcd, symme-

try conditions are assumed so that on these planes zero

cross-stream gradient condition, oðÞ=oz ¼ 0 is specified

with w ¼ 0. For solid surfaces, the base plate AE-

ehHDda and the block surfaces fghe, FfeE, FfgG and

GHhg, the near wall values for the parallel velocity

components, temperature, the turbulent kinetic energy
and its dissipation rate are determined from the stan-

dard log-law based wall function (Launder and Spalding

(1974)) where in this model no-slip boundary condition

will be imposed over the wall surfaces. The base plate,

AEehHDda, will not have any contribution to heat

transfer, because it will be assumed adiabatic.

125· 70 · 24 0.00767 84.42 4.595

145· 80 · 28 0.00724 88.67 4.328

165· 88 · 32 0.00688 93.19 4.136

180· 95 · 36 0.00678 94.36 4.077

Table 2

Various cases simulated

Parameter Values

Re ¼ U1D=v 5 · 103, 5· 104, 2· 104, 3 · 104
Br ¼ D=W 10%, 15%, 20%, 25%

Hr ¼ H=D 5

Ar ¼ L=D 5
4. Computational scheme

4.1. Domain geometry and grid size

The domain used in these calculations consist of an

entrance region, an exit plane and the upper free-stream

surface which should be selected sufficiently far from the

block surfaces that the results become independent of
the boundary positions. However for the upstream

plane, the effect of the boundary layer development over

the base plane may have a slight influence. But such

distance is needed because the flow is actually not uni-

form over the front edge of the rectangles. In the present

conditions, several tests were made and using the expe-

rience of previous studies (Yaghoubi et al. (2002)), the

computational domain was chosen as illustrated in Fig.
3, where it extends 15D upstream, 40D downstream and

the domain height is taken as 6H . The blocks tested in

this analogy are assumed to have an aspect ratio of 5,

similar to the experimental studies carried out by

Igarashi and Mayumi (2001).

The next step is selection of appropriate grid point

numbers in the three-dimensional region such that the

solution becomes independent of grid density. The grid
is chosen to be dense near the plate and a typical grid is

shown in Fig. 4. Grid independence was studied by

changing the number of grids in all three dimensions

and examining the corresponding predictions of flow

field and pressure coefficient, friction factor and Nusselt

number. Five different grids were tested and it was

found that for each geometry and Reynolds number,

special consideration should be made to study the
independence of predicted flow on grid size and distri-

bution. However, due to sharp corners and mixing of

bubbles with boundary layers, several grid distributions

were studied. For each grid the average friction coeffi-
cient, average Nusselt number and length (center posi-

tion) of the reattachment region over the plane side

surface is determined. Typical calculations are presented

in Table 1. It was found that for Re ¼ 1� 104 and

Br ¼ 20%, a grid of 165 · 88 · 32 such as presented in

Fig. 4, produced grid independent flow through the

blocks, in terms of the mentioned flow parameters (see

Table 2).

4.2. Computational procedure

The governing equations for turbulent three-dimen-

sional flow are solved using the finite volume discreti-

zation technique, in which the control volume cells for

velocity components are staggered with respect to the

main control volume cells using the SIMPLEC pres-
sure–velocity coupling algorithm developed by Van-

doormaal and Raithby (1984).

4.3. Validation

To assess the present computational method, two-

dimensional experimental studies on fluid flow and heat

transfer characteristics around a rectangular cylinder by
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Igarashi and Mayumi (2001) were used. In this respect,

the block aspect ratio is 5 and its blockage ratio 6.6% .

Free-stream velocity was varied from 4 to 20 (m/s),

which corresponded to Reynolds number, Re in the

range 2:56� 103 to 1:28� 104, and free-stream turbu-

lence intensity was chosen to be 0.4%. Also the tem-

perature of the free-stream is nearly 20 �C, similar to

experiments of Igarashi and Mayumi (2001). For the test
model, a constant heat flux condition was considered.

Numerical values of the average Nusselt number over

the block surfaces was determined by calculating the

average convective coefficient of all surface grids over

the rectangular plate for similar flow conditions and the

results are compared with the experimental measure-

ments of Igarashi and Mayumi (2001) in Fig. 5. Very

good agreement is observed for the range of considered
Reynolds numbers.
Fig. 6. Fluid particle paths around an array of plates at different

heights, Hr¼ 5, Br¼ 20%, Ar¼ 5, Re ¼ 1� 104.
5. Results and discussions

For an array of parallel rectangles, several compu-

tations were carried out to determine fluid flow, pressure

field through the blocks or fins, conjugate conduction
heat transfer and temperature distribution in the fins,

and fluid convective heat transfer from blocks to the

ambient flow. Calculation was performed for the cases

presented in Table 2 (for Pr ¼ 0:7).

5.1. Fluid flow

The flow field for the configuration shown in Fig. 2 is
three-dimensional and can be divided into three regions;

first the upstream section where the flow approaches

nearly uniformly the leading edges of the plates. In this

zone the flow splits into two parts as it approaches the

plates, with a stagnation point at the forward face of the

plate. The second region is between the plates where the

base plate contributes to boundary layer development
and flow separation leads to recirculation and reat-

tachment over the plates and their interaction generates

swirling motion within each channel. The third region is

the fluid flow downstream from the rectangles, where a
recirculation bubble behind the plate interacts with

boundary layer development over the base plate. On the

sides of the plate surfaces and in the leeward position,

the size of the bubble varies with height. Typical fluid

particle paths around the plates at different elevations

from 0:1H to 0:9H are shown in Fig. 6. For this case, the

reattachment position changes with height over the

block side surfaces, while no reattachment occurred near
the base plate and upper surface. For this region the

center of the reattachment is placed at about 0:41H .

Fluid flow is strongly affected by the presence of the base



Fig. 7. Secondary flow distribution in various sections of stream-wise

direction, Hr¼ 5, Br¼ 15%, Ar¼ 5.

Fig. 8. Typical 3D contours of pressure over the plate, Hr¼ 5,

Br¼ 20%, Ar¼ 5 and Re ¼ 1� 104.
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plate and the free-stream above the fins and flow is

strongly three-dimensional. Flow separation at the cor-

ners and recirculation over the fin surfaces, both at the

top surface and the side surfaces has created a unique
fluid flow, which is completely different from those in

two-dimensional studies. Circulation behind the blocks

is also visible, but far downstream, the effect of the

blocks on the flow diminishes at such height ratio. Fig. 6

demonstrates that the flow changes at different height

between blocks, with no recirculation near the base

plate. For increasing heights, the flow over the top

surface dominates, pushing down the bubble and mixing
layer and preventing bubble formation near the block

upper edge. A similar phenomenon is observed behind

the plate.

In a turbulent flow in a straight duct of non-circular

cross-section, a transverse mean flow exists when the

flow is fully developed. This transverse flow, commonly

known as the secondary flow, brings the fluids into

complex lateral spiral motions as superimposed on the
axial mean flow. Although the magnitude of the sec-

ondary flow scarcely amounts to a few percent of the

bulk velocity, its presence displaces the lines of constant

axial mean velocity considerably toward the corners,

yielding a comprehensively high velocity field there.

Flow through finite parallel blocks attached over a

surface is also rotational and secondary flow by means

of cross stream-wise velocity components, produced
different flow patterns than those of parallel plates

without attachment to a base plate. Secondary flow

moves the fluid toward the corner along the plate side

surface, over the base, and then outward in the mid-

plane section due to symmetry with the opposite sec-

ondary flow. The direction of rotation in the mid-span

section of the blocks is very similar to those reported by

Shah and Bhatti (1987), which is presented for the mid-
plane of close rectangular ducts in fully developed flow.

The strength of the swirl reduces in the downstream

direction, which corresponds to the weakness of dis-

tortion due to blocks in the flow fluid. A schematic of

the secondary flow patterns between the plates for dif-

ferent Reynolds numbers is presented in Fig. 7. Swirling

flows has a high gradient near the leading edge, the plate

surface and the corner. Swirling motion mixes the
boundary layer on the base with the bubble over the

block side surfaces, resulting in a downward movement

of the bubble and reattachment position. The boundary

layer over the base plate opposes the recirculating

bubbles that are formed over the plate side surfaces and

eliminate flow reattachment over the block surfaces near

the base plate as shown also in Fig. 6.

Typical 3D contours of the pressure field are illus-
trated in Fig. 8. The pattern of pressure distribution is

not the same for different Reynolds number, however,

the pressure field is high on the forward faces, and re-

duces behind the blocks as well as in the recirculation
region. Pressure is uniform on upstream, downstream

and far height above the blocks.

For parallel blocks, the position of reattachment over

the side faces is important for studies of friction factor,

pressure distribution and heat transfer, because the

maximum value of heat transfer occurs around this re-

gion.

Consequently, accurate knowledge of this position is
very important in heat transfer processes. Fig. 9 illus-

trates the center position of the reattachment region,

where its length enlarges with increasing Reynolds

number and reduces with increasing blockage ratio.

Similar effects were observed for laminar flow by

Yaghoubi et al. (2002). Also the height of the reat-

tachment region decreases with increasing Reynolds
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number and increases with an increase of the blockage

ratio. This means that the bubble moves upward when
Fig. 10. Typical 2D contours ofwall shear stress over the pla
the block separation is reduced and hence on increasing

blockage ratio. It should also be noted that reattach-

ment does not happen for high Reynolds number and

also at low blockage ratios.
Variation of the flow field over the plate surface is

accompanied by a shear stress distribution, which de-

pends strongly on Reynolds number and plate blockage

ratios. A typical surface shear stress field over the plate

is illustrated in Fig. 10. The wall shear stress distribution

is strongly three-dimensional. The shear layers get sep-

arated at the front edge, and then reattach over the

plane surface and the separation bubbles are formed on
the plate surface. The separation line appears in the

location where separation bubbles are formed. This

separation line is not a straight line. Fig. 10 shows the

separation and reattachment regions over the side sur-

face for Reynolds numbers 5 · 103 to 3 · 104. The region
of flow reattachment area corresponds to zero wall shear

stress an friction factor coefficient. These figures show

that the flow reattachment region is moved to the end of
the block with increasing Reynolds number as indicated

in Fig. 9. These figures also show that reattachment will

not occur for Reynolds number equal to and greater

than 2 · 104.
te, Hr¼ 5, Br¼ 15%, Ar¼ 5 ((d) reattachment region).



Fig. 12. Typical 3D contours of plate surface temperature, Tb ¼ 75 �C,
T1 ¼ 25 �C, increment¼ 0.7 �C, Hr¼ 5, Br¼ 20%, Re ¼ 3� 104.
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The average friction factor coefficient is calculated by:

Cf ¼
�sw

1
2
qU 2

1
ð5Þ

where �sw the average wall shear stress over the block side
surface. For the studies considered, wall shear stress is

determined over the surface and its average value is

calculated for each condition. Variation of average

friction factor coefficient ðCfÞ versus Reynolds number,

in different blockage ratios over the side plate, is illus-

trated in Fig. 11. Comparison of the results with a

standard correlation (Incropera and DeWitt, 1996) for

thin plate shows good trends. Increasing blockage ratio
enhances the friction coefficient. For all cases, the

average friction factor coefficient decreases with

increasing Reynolds number, which is similar to the flow

over flat plates.

5.2. Heat transfer

The dynamics of flow and convection heat transfer
are strongly three-dimensional and the average convec-

tion heat transfer coefficient is closely related to the fin

spacing and Reynolds number. Heat transfer from the

plate depends on the temperature field around the plate

and variation of temperature over the plate surfaces. A

typical three-dimensional temperature field for constant

temperature of the plate’s base surface is presented in

Fig. 12. The area of dense temperature contours relates
to a high temperature position. Also the blocks have

higher temperature close to the base plate, which cor-

responds to a low convection heat transfer coefficient. It

can be seen that near the top surface, temperature is

close to the fin base temperature due to high thermal

conductivity assumed for the fins (202 W/mk). However

by decreasing the thermal conductivity of the fin, such

temperature differences will be increased. It is observed
that for high Reynolds number, the temperature varia-

tion over the plate surface is not significant, except at the
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Fig. 11. Variation of average friction coefficient over the plate side

surface, Hr¼ 5, Ar¼ 5.
edges, and recirculation produces a nearly uniform

temperature in the wake and strong variation in the

other regions. Isothermal lines have symmetric closed

circles in the wake with high values in the center of the
wake and gradually reduce with off-center position. Far

from the blocks, the effects of the heating element on the

fluid temperature reduces.

Fig. 13 demonstrates 2D contours of surface Nusselt

number for different Reynolds numbers. From these

figures, the location of hot spots and cold spots over the

fin surface can be identified. The forward and upward

edges have the lowest temperature. It is also observed
that the maximum Nusselt number is not exactly in the

reattachment region. This value occurs in some region

around the reattachment point, similar to the two-

dimensional finding of Ota and Ohi (1995). Fig. 13 also

demonstrates that the upper edge effect is enhanced

cooling at increasing Reynolds number. Fig. 14 presents

the variation of average overall Nusselt number over the

entire surface of the blocks ðNu ¼ �hD=kÞ. In this figure,
the experimental measurements of Sparrow et al. (1982)

for an array of rectangular modules deployed along one

wall of a flat rectangular duct and the results for a thin

plate (Incropera and DeWitt, 1996) are also included.

Consistent agreement is observed as Br is reduced by

means of increasing the space between the blocks with

constant thickness. From Fig. 14, it can be observed that

the average Nusselt number increases with Reynolds
number, or by increasing the blockage ratio (by

decreasing the blocks spacing).

For practical consideration the average Nusselt

number is needed. For the range of the numerical

computations made in this study with a block of aspect

ratio 5, a correlation for average overall Nusselt number

of block is developed:

Nu ¼ 0:126Re0:68ð1þ 2:13BrÞ for 5� 1036Re63� 104

and 10%6Br625% ð6Þ

The corresponding variation of correlation (6) is

presented in Fig. 15, which shows good agreement with



Fig. 13. Typical 2D contours of Nusselt number over the plate side surface, Hr¼ 5, Br¼ 15%, Ar¼ 5 ((d) region of maximum Nusselt number or

cold spot).

Fig. 14. Variation of average Nusselt number over the blocks, Hr¼ 5,

Ar¼ 5.
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Fig. 15. Correlation of average overall Nusselt number over the block

surface, Hr¼ 5, Ar¼ 5.
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computed data. This expression is similar to the corre-

lation presented for average Nusselt number by Igarashi

and Mayumi (2001) in terms of variation with Reynolds

number. Closing the spacing between plates enhances

the local convection coefficient and the influences of

upper edge and shear layer breaking or bubble breaking
near the edge mixes the flow and contributes to an in-

crease of Nusselt number.

In the present computations, the array of plates can

be considered as finite fins attached over a surface such

as in heat exchangers, cooling of electronic components

on circuit boards, cooling of gas-turbine blades or
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engines. Conjugate conduction and convection heat

transfer can simulate the fins performance for various

flows and fin spacings. Measurement of fin thermal
performance can be provided by fin efficiency, which

represents the convection heat transfer from the fin ra-

ther than the maximum driving potential for convection.

The maximum rate at which a fin could dissipate energy

is the rate that would exist if the entire fin surface were

at the base temperature, Tb. The fin efficiency is therefore

defined as:

gf ¼
qf
qmax

¼ qf
�hAfðTb � T1Þ

ð7Þ

From computations performed the local convection

and temperature over the entire surface of the block are

calculated and the rate of heat transfer qf , is determined

by qf ¼
P �hDAðTs � T1Þ. Therefore, gf can be found

from relation (7). The variation of the fin efficiency, gf is
presented in Fig. 16. This figure shows that fin efficiency

is reduced by decreasing fin spacing and increasing flow
Reynolds number.

Based on the numerical values obtained, a correlation

for fin efficiency is determined as follows:

gf ¼ 2:823Re�0:14Br�0:0526 for 5� 103 6Re6 3� 104

and 10%6Br6 25% ð8Þ

This correlation fitted with a mean average of 1%

deviation. Relation (8) can be used for design imple-

mentation of finite fins on engines or heat sink elements
attached over a heat-source in electronic cooling. For

such configurations, usually a uniform convection

coefficient is suggested, while Fig. 13 indicates that there

is a strong variation of convection coefficient due to

swirl motion and bubble mixing with shear boundary

layer. Eq. (8) also illustrates strong effects of fin spacing

and predicts higher values of heat transfer from finite

fins with respect to fins with long length in the stream-
wise direction.
6. Conclusion

Numerical computation is made to analyze fluid flow
and conjugate heat transfer from finite thick plates at-

tached over a surface. These elements can be considered

to be an array of blocks or fins for various applications.

Calculations are made for non-dimensional parameters

Ar ¼ 5; Hr ¼ 5; 5� 103 6Re6 3� 104 and 10%6

Br6 25% and the following conclusion are made:

1. For three-dimensional flows, separation and reat-

tachment over the plate surfaces and recirculation

downstream of the plate are highly depends on Rey-

nolds number and plate blockage ratio.
2. The length of reattachment region enlarges with

increasing Reynolds number and decreasing blockage

ratio. The height of the reattachment region decreases

with increasing Reynolds number and decreasing

blockage ratio. Also reattachment does not occur

for high Reynolds number and for low blockage

ratios.

3. The average friction factor coefficient decreases with
increasing Reynolds number, which is similar to the

flow over flat plates. Also by increasing blockage

ratio, the friction coefficient increases.

4. Local shear stress in the recirculating bubble is nega-

tive, and after the flow reattachment over the plate it

is positive. Therefore the average friction coefficient

ðCfÞ is less than the average friction coefficient over

a thin plate with the same length. Moreover, effects
of three-dimensionality make the flow different from

two-dimensional thin plate conditions.

5. Heat transfer prediction shows a maximum value

near the reattachment zone.

6. The average Nusselt number increases with increa-

sing Reynolds number and increasing blockage

ratio. The variation of overall heat transfer for an

array of bluff plates with Br in the range of
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10%6Br6 25% can be obtained by Nu ¼ 0:126Re0:68

ð1þ 2:13BrÞ.
7. It is found that for any Reynolds number in the range

of 5� 103 6Re6 3� 104, by increasing the blockage
ratio to 10%, the Nusselt number increases to about

21.3%. This means that the effect of the plate’s spac-

ing is very significant for the fluid flow and heat trans-

fer around such blocks.

8. For plates acting like fins, fin efficiency is determined

and the following relation is developed to predict var-

iation of overall fin efficiency with Reynolds number

and blockage ratio: gf ¼ 2:823Re�0:14Br�0:0526.
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